内网 新内网

检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。

下载Firefox
胡家志

邮  箱: hujz (AT) pku.edu.cn

职  称:研究员

办公室地址:北京市海淀区颐和园路5号,北京大学,吕志和楼,100871

所属实验室:胡家志实验室

实验室地址:北京市海淀区颐和园路5号,北京大学,吕志和楼,100871

实验室主页

http://hulab.pku.edu.cn

复制成功
  • 个人简介
  • 科研领域
  • 代表性论文
  • 实验室简介

教育经历:

2006    学士    北京大学
2012    博士    北京大学

工作经历:

2016    研究员    北京大学
2012    博士后    哈佛大学医学院及波士顿儿童医院

荣誉奖励:

奖教金杰出青年奖,2022
教学优秀奖,2021
郑昌学奖教金,2021
求是杰出青年学者,2018
绿叶生物医药杰出青年,2018
拜耳学者,2018
億方学者,2017
哈佛华人生命科学研究奖,2016
美国癌症研究中心博士后奖学金,2014
吴瑞奖学金,2012
北京市优秀毕业生,2012
北京大学优秀毕业生,2012
北京大学优秀毕业论文奖,2012

书籍编撰:

Frock RL#, Hu J#, & Alt FW. (2015). Mechanisms of recurrent chromosomal translocations. In book: Chromosomal Translocations and Genome Rearrangements in Cancer. Springer International Publishing, ISBN: 978-3-319-19983-2. doi: 10.1007/978-3-319-19983-2

执教课程:

《免疫学》《免疫学实验》
      我们实验室将以小鼠和人的免疫细胞为主要研究对象,研究方向集中在:
1. 在哺乳动物复杂的染色质环境下研究DNA复制、DNA损伤和DNA代谢与基因组稳定性和肿瘤发生之间的关系;
2. 在时间和空间尺度上研究衰老过程或不同组织中淋巴细胞功能的变化以及相关的DNA代谢变化;
3. 深入挖掘抗体的发育和成熟机理,并利用合成生物学技术改造细胞,促使其实现抗体生产和抗体进化。
代表性论文 (# 共同一作, *共同通讯)
Liu Y#, Zhangding Z#, Liu X#, Gan T, Ai C, Wu J, Liang H, Chen M, Guo Y, Lu R, Jiang Y, Ji X, Gao N, Kong DC, Li Q & Hu J (2024). Fork coupling directs DNA replication elongation and termination. Science. 2024.Mar; 383(6688):1215-22. doi:10.1126/science.adj7606.

Wu J#, Liu Y#, Zhangding Z#, Liu X#, Ai C, Gan T, Liang H, Guo Y, Chen M, Liu Y, Yin J, Zhang W & Hu J (2023). Cohesin maintains replication timing to suppress DNA damage on cancer genes. Nature Genetics. 2023.Aug; 55(8):1347-1358. doi:10.1038/s41588-023-01458-z.

Yin J#, Fang K#, Gao Y#, Ou L, Yuan S, Xin C, Wu W, Wu W-W, Hong J, Yang H*, & Hu J* (2022) Safeguarding genome integrity during gene-editing therapy of age-related macular degeneration. Nature Communications 13(1):7867. doi: 10.1038/s41467-022-35640-4.

Yin S#, Zhang M#, Liu Y#, Sun X, Chen X, Yang L, Huo Y, Yang J, Zhang X, Han H, Zhang J, Li G, Xiao M, Guan Y, Liu M, Hu J*, Wang L* & Li D* (2022) Engineering of efficiency enhanced Cas9 and base editors with improved gene therapy efficacies. Molecular Therapy S1525-0016(22)00672-4. doi: 10.1016/j.ymthe.2022.11.014.

Wu J#, Zou Ziye#, Liu Y#,*, Liu X, Zhangding Z, Xu M* & Hu J* (2022). CRISPR/Cas9-induced structural variations expand in T lymphocytes in vivo. Nucleic Acids Research 50(19):11128-11137. doi: 10.1093/nar/gkac887.

Xin C#, Yin J#, Yuan S, Ou L, Liu M, Zhang W & Hu J (2022). Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption. Nature Communications 13(1):5623. doi: 10.1038/ s41467-022-33346-1.

Chen X#, Niu X#, Liu Y#, Zheng R, Yang L, Lu J, Yin S, Wei Y, Pan J, Sayed A, Ma X, Liu M, Jing F, Liu M, Hu J*, Wang L* & Li D* (2022). Long-term correction of haemophilia B through CRISPR/Cas9 induced homology-independent targeted integration. J Genet Genomics S1673-8527(22)00159-X. doi: 10.1016/j.jgg.2022.06.001.

Yin J & Hu J (2022). The origin of unwanted editing byproducts in gene editing. Acta Biochim Biophys Sin 54(6):1-15. doi: 10.3724/abbs.2022056.

Xie X#, Gan T#, Rao B#, Zhang W, Panchakshari RA, Yang D, Ji X, Cao Y, Alt FW, Meng F-L* & Hu J* (2022). C-terminal deletion-induced condensation sequesters AID from IgH targets in immunodeficiency. EMBO J 41(11):e109324. doi: 10.15252/embj.2021109324.

Yin J#, Lu R#, Xin C#, Wang Y, Ling X, Li D, Zhang W, Liu M, Xie W, Kong L, Si W, Wei P, Xiao B, LEE HY, Liu T & Hu J (2022). Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nature Communications 8;13(1):1204. doi: 10.1038/s41467-022-28900-w.

Liu Y#,*, Yin J#, Gan T#, Liu M, Xin C, Zhang W & Hu J* (2022). PEM-seq comprehensively quantifies DNA repair outcomes during gene-editing and DSB repair. STAR Protocols 3(1), 101088. doi: 10.1016/j.xpro.2021.101088

Gan T, Wang Y, Schatz DG & Hu J (2021). RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Reports 37, 209824. doi:10.1016/j.celrep.2021.109824

Liu M#, Zhang W#, Xin C#, Yin J, Shang Y, Ai C, Li J, Meng F-L & Hu J (2021). Global detection of DNA repair outcomes induced by CRISPR-Cas9. Nucleic Acids Research 49(15):8732-8742. doi: 10.1093/nar/gkab686.

Zhang W#, Yin J#,*, Zhang-Ding Z, Xin C, Liu M, Wang Y, Ai C & Hu J (2021). In-depth assessment of the PAM compatibility and editing activities of Cas9 variants. Nucleic Acids Research doi: 10.1093/nar/gkab507.

Liu Y#, Ai C#, Gan T#, Wu J, Jiang Y, Liu X, Lu R, Gao N, Li Q, Ji X, Hu J (2021). Transcription shapes DNA replication initiation to preserve genome integrity. Genome Biology 22(1):176. doi: 10.1186/s13059-021-02390-3

Yin J#, Liu M#, Liu Y#, Wu J, Gan T, Zhang W, Li Y, Zhou Y & Hu J (2019). Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discovery 5, 819. doi: 10.1038/s41421-019-0088-8.

Zuo E#, Huo X#, Yao X#, Hu X#, Sun Y#, Yin J#, He B, Wang X, Shi L, Ping J, Wei Y, Ying W, Wei W, Liu W, Tang C, Li Y, Hu J* & Yang H*. (2017). CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biology 18(1):224. doi: 10.1186/s13059-017-1354-4.

Lin SG#, Ba Z#, Du Z#, Zhang Y, Hu J* & Alt FW*. (2016). A highly sensitive and unbiased approach for elucidating antibody repertoires. Proc Natl Acad Sci USA 113(28):7846-51. doi:10.1073/ pnas.1608649113.

Hu J#, Meyers RM#, Dong J, Panchakshari RA, Alt FW* & Frock RL*. (2016). Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nature Protocols 11(5): 853-71. doi: 10.1038/nprot.2016.043.

Hu J#, Zhang Y#, Zhao L, Frock RL, Du Z, Meyers RM, Meng F-L, Schatz DG, & Alt FW. (2015). Chromosomal loop domains direct the recombination of antigen receptor genes. Cell 163(4): 947-59. doi: 10.1016/j.cell.2015.10.016.

Frock RL#, Hu J#, & Alt FW. (2015). Mechanisms of recurrent chromosomal translocations. In book: Chromosomal Translocations and Genome Rearrangements in Cancer. Springer International Publishing, ISBN: 978-3-319-19983-2. doi: 10.1007/978-3-319-19983-2

Frock RL#, Hu J#, Meyers RM, Ho Y-J, Kii E, & Alt FW. (2015). Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nature Biotechnology 33(2):179-86. doi: 10.1038/ nbt.3101.

Hu J#, Tepsuporn S#, Meyers RM, Gostissa M*, & Alt FW*. (2014). Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes. Proc Natl Acad Sci USA 111(28): 10269-74. doi: 10.1073/pnas.1410112111.

Tepsuporn S#, Hu J#, Gostissa M*, & Alt FW*. (2014). Mechanisms that can promote peripheral B-cell lymphoma in ATM-deficient mice. Cancer Immunol. Res. 2(9): 857-66. doi: 10.1158/2326-6066. CIR-14-0090.

Hu J, Sun L, Shen F, Chen Y, Hua Y, Liu Y, Zhang M, Hu Y, Wang Q, Xu W, Sun F, Ji J, Murray JM, Carr AM, & Kong D. (2012). The intra-S phase checkpoint pathway targets Dna2 to prevent stalled replication forks from reversing. Cell 149(6): 1221-32. doi: 10.1016/j.cell.2012.04.030.

细胞是生物体的基本单元,每个细胞都是一个复杂而精密的生态系统,在内外环境中都有着精心维护的平衡。细胞内部有着复杂的亚细胞结构,细胞核作为遗传物质的容器,其染色质环境同样复杂,包括染色质的多级复杂结构和表观遗传信息。而在细胞外部,细胞间的相互作用是生物系统维系的关键。虽然以免疫系统和神经系统为研究对象,对细胞之间的信号与功能进行了比较充分的研究,但目前我们所知道的只是其中的冰山一角。在免疫系统中,存在一类特异性超高的分子──淋巴细胞B和T细胞表面的受体,也即我们熟悉的B细胞受体和T细胞受体,前者的分泌形式即抗体。随着研究技术的快速发展和科学数据的不断积累,研究的焦点将逐渐从低等模式生物逐渐转移到人本身,而研究的层次也将更趋于系统性和整体性。我们实验室将以小鼠和人的免疫细胞为主要研究对象,研究方向集中在:
1. 在哺乳动物复杂的染色质环境下研究DNA复制、DNA损伤和DNA代谢与基因组稳定性和肿瘤发生之间的关系;
2. 在时间和空间尺度上研究衰老过程或不同组织中淋巴细胞功能的变化以及相关的DNA代谢变化;
3. 深入挖掘抗体的发育和成熟机理,并利用合成生物学技术改造细胞,促使其实现抗体生产和抗体进化。


实验室成员:
博士后-刘阳、甘婷婷
2016级-尹健行、张微微
2017级-吴锦淳
2018级-郭岳峰、辛昌昌、卢如森
2019级-王渝鸿
2020级-孔凌云
2021级-刘栩豪、张丁峥嵘、欧丽琼
实验室电话62744611

检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。

下载Firefox