Home / RESEARCH / News RESEARCH

Oligomerization and Photo-Deoligomerization of HOOKLESS1 Controls Plant Differential Cell Growth

Sep.06,2019

Dr. Shangwei Zhong published a paper on Developmental Cell.


Apical hook curvature is crucial for buried seedling survival and a superb model for dissecting differential cell growth. HOOKLESS1 (HLS1) is essential for apical hook formation, acting as a hub integrating various external and internal signals. However, its functional mechanism remains unclear. Here, we demonstrate that HLS1 protein is present as an oligomer in the nucleus of dark-grown seedlings. Oligomerization is required for HLS1 activation, as the mutated HLS1 protein abolishing self-association exists as nonfunctional monomers. Upon light exposure, photoreceptor phyB translocates into the nucleus and interacts with HLS1, disrupting the self-association and oligomerization of HLS1 to initiate hook unfolding. Remarkably, genetic expression of nuclear-localized phyB is sufficient to inactivate HLS1, resulting in compromised hook curvature in etiolated seedlings. Together, we conclude that HLS1 protein is active as oligomeric form in darkness and achieves allosteric photo-deactivation upon light, providing intriguing mechanistic insight into the molecular switch for developmental transition.


Original link: https://www.cell.com/developmental-cell/fulltext/S1534-5807(19)30667-7