Home /
TAO, Louis
Office Address: Wang Kezhen Building,Peking University, No.5 Yiheyuan Road, Haidian District,Beijing, P.R.China 100871
Lab Address: Wang Kezhen Building,Peking University, No.5 Yiheyuan Road, Haidian District,Beijing, P.R.China 100871
Lab Homepage: http://cqb.pku.edu.cn/kxdw/zxjs/tlt/253415.shtml
Personal Homepage: http://
Editorial Activities
2016-Present Editorial Board member of Journal of Computational Neuroscience
2009-Present Editorial Board member of Acta Biophysica Sinica
2014-Present Review Editorial Board member of Frontiers in Computational Neuroscience
Representative Peer-Reviewed Publications
1. Xiao, Z., Wang, B., Sornborger, A.T.*, and Tao, L.*, `Mutual information and information gating in synfire chains,` Entropy (2018)
2. Xiao, Z., Zhang, J.W., Sornborger, A.T.*, and Tao, L.*, `Cusps enable line attractors for neural computation,` Phys. Rev. E. (2017)
3. Zhao, M. et al, `Segmentation and classification of two-channel C. elegans nucleus-labeled fluorescence images,` BMC Bioinformatics (2017)
4. Shao, Y., Sornborger, A.T.*, and Tao, L.*, “A pulse-gated, predictive neural circuit,” 2016 50th Asilomar Conference on Signals, Systems and Computers (2017)
5. Wang, Z., Sornborger, A.T. *, and Tao, L.*, “Graded, dynamically routable information processing with synfire-gated synfire chains,” PLoS Comput.Biol. 12(6): e1004979 (2016)
6.Sornborger, A.T.*; Wang, Z.; Tao, L.* “A mechanism for graded, dynamically routable current propagation in pulse-gated synfire chains and implications for information coding,” J. Comput. Neurosci. 39, 181-195 (2015)
7. Wang, C. and Tao, L.* “Dimensional reduction of a V1 ring model with simple and complex cells,” J. Comput. Neurosci. 37, 481-492 (2014)
8. Zheng, C. Yu, Z., Zhou, Y., Tao, L., Pang, Y., Chen, T., Zhang X. Qiu, H., Zhou, H., Chen, Z. and Huang Y., “Live cell imaging analysis of the epigenetic regulation of the human endothelial cell migration at single cell resolution,” Lab on a Chip, 32, 3063-3072 (2012)
9. Tao, L.*, Praissman, J., and Sornborger, A.T.*, “Improved dimensionally-reduced visual cortical network using stochastic noise modeling,” J. Comput. Neurosci., 32, 367-376 (2012)
10. Cai, D., Tao, L., Shkarayev, M.S., Rangan, A.V., McLaughlin, D.W., and Kovacic, G., “The role of fluctuations in coarse-grained descriptions of neuronal networks,” Comm. Math. Sci. 10, 307-354 (2012)
11. Tao, L.*, Lauderdale, J.D.* and Sornborger, A.T.*, “Mapping functional connectivity between neuronal ensembles with larval zebrafish transgenic for a ratiometric calcium indicator,” Frontiers in Neural Circuits 5, 2 (2011)
12. Carceras, M.J., Carrillo, J.A., and Tao, L., “A numerical solver for a nonlinear Fokker-Planck equation representation of neuronal network dynamics,” J. Comput. Phys. 230, 1084 (2011)
13. Tao, L.* and Sornborger, A.T.* “Dimensionally-reduced visual cortical network model predicts network response and connects system- and cellular-level descriptions,” J. Comput. Neurosci. 28, 91-106 (2010)
14. Kovacic, G., Tao, L., Rangan, A.V., and Cai, D., “Fokker-Planck description of conductance-based integrate-and-fire neuronal networks,” Phys. Rev. E 80, 021904 (2009)
Mathematical Modeling in the Life Sciences, Spring
Laboratory Introduction

Most of my research is in computational neuroscience and mathematical modeling of biological systems. My main research interests are in

1)    Theoretical and computational neuroscience

·       Statistical physics approach to neuronal network dynamics

·       Dimensional reduction of large-scale neuronal network dynamics

·       Neural computations of pulse-gated synfire chains

2)    Mathematical modeling and data analysis of V1

·      Modeling of mammalian visual cortex

·      Analysis of V1 neurophysiological and calcium imaging data

3)    Systems level optical imaging and modeling

·      Simultaneous behavior and neural circuit imaging of C. elegans

·      Analysis of large-scale zebrafish calcium imaging data

The bulk of my work in computational neuroscience has been aimed at understanding how biological functions and large-scale spatio-temporal dynamical patterns in the mammalian cortex emerge from the dynamic interaction between cortical neuronal network components.