Home /
dgluo(AT)pku.edu.cn
LUO, Donggen
Title:
Investigator
Office Phone: 62760611
Office Address: LUI CHE WOO BUILDING,Peking University, No.5 Yiheyuan Road, Haidian District,Beijing, P.R.China 100871
Lab Phone: 62768199
Lab Address: LUI CHE WOO BUILDING,Peking University, No.5 Yiheyuan Road, Haidian District,Beijing, P.R.China 100871
Lab Homepage: http://
Personal Homepage: http://
Resume
Books and Book Chapter
1. Luo DG, Su CY and Yau KW, Photoreceptors: Physiology. In Encyclopedia of Neuroscience, 2009, Vol. 7, (Ed. Squire, LR) Academic Press, pp. 677-686.
2. Luo DG, Kefalov VJ and Yau KW, Photrotransduction in rods and cones. In The Senses: A Comprehensive Reference, 2007, (Eds. Masland HR and Albright TD) Elsevier, pp 269-301.
Representative Peer-Reviewed Publications
1. Zhou Y, Cao LH, Sui XW, Guo XQ, and Luo DG. Mechanosensory circuits coordinate two opposing motor actions in Drosophila feeding. Science Advances 2019, 5: eaaw5141.

2. Li MT, Cao LH, Xiao N, Tang M, Deng B, Yang T, Yoshii T, and Luo DG. Hub-organized parallel circuits of central circadian pacemaker neurons for visual photoentrainment in Drosophila. Nature Communications 2018, 9: 4247.

3. Cao LH, Yang D, Wu W, Zeng X, Jing BY, Li MT, Qin SS, Tang C, Tu Y, and Luo DG. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila. Nature Communications 2017, 8: 1357.

4. Yue WW, Frederiksen R, Ren X, Luo DG, Yamashita T, Shichida Y, Cornwall MC, Yau KW. Spontaneous activation of visual pigments in relation to openness/closedness of chromophore-binding pocket. eLife, 2017, 6. pii: e18492.

5. Cao LH, Jing BY, Yang D, Zeng X, Shen Y, Tu Y and Luo DG. Distinct signaling of Drosophila chemoreceptors in olfactory sensory neurons. Proc. Natl. Acad. Sci. USA, 2016, 113, E902-E911.

6. Cao LH, Luo DG and Yau KW. Light responses of primate and other mammalian cones. Proc. Natl. Acad. Sci. USA, 2014, 111, 2752-2757.

7. Luo DG*, Yue WWs, Ala-Laurila P and Yau KW*. Activation of visual pigments by light and heat. Science, 2011, 332, 1037-1032. (*Co-corresponding Authors)

8. Fu Y*, Kefalov VJ*, Luo DG*, Xue T* and Yau KW. Quantal noise from human red cone pigment. Nature Neuroscience, 2008, 11, 565-571. (*Equal Contributions)

9. Luo DG, Xue T, and Yau KW. How vision begins: an odyssey. Proc. Natl. Acad. Sci. USA, 2008, 105, 9855-9862.

10. Su CY, Luo DG, Terakita A, Schichida Y, Liao HW, Kazmi MA, Sakamar TP and Yau KW. Parietal-eye phototransduction components and their potential evolutionary implications. Science, 2006, 311, 11617-11621.

11. Luo DG and Yau KW. Rod sensitivity of neonatal mouse and rat. J. Gen. Physiol., 2005, 126, 263-269.

12. Fu YB, Zhong HN, Wang MH, Luo DG, Liao HW, Maeda H, Hattar S, Frishman LJ and Yau KW. Intrinsically photosensitive retinal ganglion cells detect light with a Vitamin A-based photopigment, melanopsin. Proc. Natl. Acad. Sci. USA, 2005, 102, 10339-10344.

13. Huttl S, Michalakis S, Seeliger M, Luo DG, Acar N, Geiger H, Hudl K, Mader R, Haverkamp S, MOser M, Pfeifer A, Gerstner A, Yau KW and Beil M. Impaired channel targeting and retinal degeneration i mice lacking the cyclic nucleotide-gated channel subunit CNGB1. J. Neurosci., 2005, 25, 130-138.

14. Luo DG, Li GL and Yang XL. Zn2+ modulates light responses of color-opponent bipolar and amacrine cells in the carp retina. Brain Res. Bull., 2002, 58, 461-468.

15. Luo DG and Yang XL. Suppression by zinc of transient OFF responses of carp amacrine cells to red light is mediated by GABAa receptors. Brain Res., 2002, 958, 222-226.

16. Luo DG and Yang XL. Zn2+ differentially modulates signals from red- and short-wavelenth-sensitive cones to horizontal cells in carp reitna. Brain Res., 2001, 900, 95-102.

17. Xu HP, Luo DG and Yang XL. Signals from cone photoreceptors to L-tyoe horizontal cells are differntially modulated by low calcium in carp retina. Eur. J. Neurosci., 2001, 13, 1411-1419.
Laboratory Introduction


My laboratory is interested in the neural mechanisms underlying animal sensation and behavior. We study: 1) the molecular mechanisms of converting physical/chemical cues into neuronal responses, 2) the principles of sensory coding and processing, and 3) the circuits of rhythmic behaviors such as circadian clock, sleep/wake, and feeding.

 

We use a genetically-malleable species, Drosophila, wherein we can label and manipulate specific neurons, to understand sensation and behavior from molecules to circuits to behaviors. The genetic approach is accompanied by a state-of-the-art integrated investigation involving optogenetic/chemogenetic manipulation, circuit tracing, two-photon-based calcium imaging, behavioral test and in vivo multi-electrode patch-clamp recordings.