Home /
GUO,Qiang
E-mail: guo.qiang(AT)pku.edu.cn
Title:
Investigator
Lab Address: Jinguang Life Science Building,Peking University, No.5 Yiheyuan Road, Haidian District,Beijing, P.R.China 100871
Lab Homepage:
Personal Homepage:
Resume
Education
09/2009 - 07/2014 Ph.D., School of Life Science, Tsinghua University, Beijing, China
09/2005 - 07/2009 B.S., School of Life Science, Lanzhou University, Lanzhou, China
Professional Experience
08/2020- present, PI, School of Life Science, Peking University
08/2020 - present, PI, Peking-Tsinghua Center for Life Sciences
09/2014 – 07/2020, Postdoc, Wolfgang Baumeister’s Group, Max Planck Institute of Biochemistry, Martinstied, Germany
Honors and Awards
Bayer Investigator, 2021
Boya Young Investigator, 2021
Yifang Investigator, 2020
Humboldt Fellowship, 2016-2017
EMBO Long-term Fellowship,2015-2017
IUCr ( International Union of Crystallography ) First Prize Travel Fellowship,2012
Research Interests
We are an in situ Structural Biology lab, we study Cellular Architecture—how subcellular compartments build up a functional cell, and Macromolecule Sociology—what’s the relationship between macromolecules and organelles.
Cryo-electron tomography (Cryo-ET) is a cutting-edge technique that allows the study of protein function in their physiological cellular context and, via subtomogram averaging technique, at molecular resolution. The development of correlative cryo-light and electron microscopy (CLEM) and focused ion beam (FIB) allows precise thinning of vitrified cells to target the region of interest. Based on these state-of-the-art techniques our research focus:
•To capture molecular snapshots of fundamental cellular processes in their physiological context.
•To better understand the structural mechanisms of human diseases, especially aging-related degenerative diseases.
•To optimize a practical workflow for high resolution in situ structural biology.
Representative Peer-Reviewed Publications
Peer-reviewed journals:
Jiang, W., Wagner, J., Du, W., Plitzko, J., Baumeister, W., Beck, F., and Guo, Q. (2022). A transformation clustering algorithm and its application in polyribosomes structural profiling. Nucleic Acids Research 50, 9001-9011. Cover Story
Riemenschneider, H., Guo, Q., Bader, J., Frottin, F., Farny, D., Kleinberger, G., Haass, C., Mann, M., Hartl, F.U., Baumeister, W. et al. (2022) Gel-like inclusions of C-terminal fragments of TDP-43 sequester stalled proteasomes in neurons. EMBO Rep, 23, e53890
Peters, J.J., Leitz, J., Guo, Q., Beck, F., Baumeister, W. and Brunger, A.T. (2022) A feature-guided, focused 3D signal permutation method for subtomogram averaging. Journal of Structural Biology, 214, 107851
Huang, B., Guo, Q., Niedermeier, M.L., Cheng, J., Engler, T., Maurer, M., Pautsch, A., Baumeister, W., Stengel, F., Kochanek, S., et al. (2021). Pathological polyQ expansion does not alter the conformation of the Huntingtin-HAP40 complex. Structure 29, 804-809.e805.
Trinkaus, V.A., Riera-Tur, I., Martínez-Sánchez, A., Bäuerlein, F.J.B., Guo, Q., Arzberger, T., Baumeister, W., Dudanova, I., Hipp, M.S., Hartl, F.U., et al. (2020). In situ architecture of neuronal α-Synuclein inclusions. Nature Communication. 12, 2110.
Seefelder, M., Alva, V., Huang, B., Engler, T., Baumeister, W., Guo, Q., Fernandez-Busnadiego, R., Lupas, A.N., and Kochanek, S. (2020). The evolution of the huntingtin-associated protein 40 (HAP40) in conjunction with huntingtin. BMC Evol Biol 20, 162
Yasuda, S., Tsuchiya, H., Kaiho, A., Guo, Q., Ikeuchi, K., Endo, A., Arai, N., Ohtake, F., Murata, S., Inada, T., et al. (2020). Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578, 296–300.
Guo, Q., Bin, H., Cheng, J., Seefelder, M., Engler, T., Pfeifer, G., Oeckl, P., Otto, M., Moser, F., Maurer, M., Pautsch, A., Baumeister, W., Fernandez-Busnadiego, R., Kochanek, S. (2018). The cryo-electron microscopy structure of huntingtin. Nature 555, 117–120.
(Selected as one of the most influential papers in Huntingtin disease of 2018 by HD Insights)
Guo, Q., Lehmer, C., Martinez-Sanchez, A., Rudack, T., Beck, F., Hartmann, H., Hipp, M.S., Hartl, F.U., Edbauer, D., Baumeister, W., Fernandez-Busnadiego, R. (2018) In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. Cell 172, 696-705.e612.
(Commentary by Pontano Vaites, L., and Harper, J.W. (2018). Protein aggregates caught stalling. Nature 555, 449–451.)
(Commentary by Lewis, S. (2018). Cell biology of the neuron: Untangling the ubiquitin–proteasome system. Nat. Rev. Neurosci. 19, 184–184.)
Zhao, Y., Zeng, X., Guo, Q., and Xu, M. (2018). An integration of fast alignment and maximum-likelihood methods for electron subtomogram averaging and classification. Bioinformatics 34, i227-i236.
Li, Z., Guo, Q., Zheng, L., Ji, Y., Xie, Y.T., Lai, D.H., Lun, Z.R., Suo, X., and Gao, N. (2017). Cryo-EM structures of the 80S ribosomes from human parasites Trichomonas vaginalis and Toxoplasma gondii. Cell Res 27, 1275-1288.
Mi, N., Chen, Y., Wang, S., Chen, M., Zhao, M., Yang, G., Ma, M., Su, Q., Luo, S., Shi, J., Xu, J., Guo, Q., et al. (2015). CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol 17, 1112-1123.
Feng, B., Mandava, CS., Guo, Q., Wang, J., Cao, W., et al. (2014) Structural and Functional Insights into the Mode of Action of a Universally Conserved Obg GTPase. PLoS Biol 12(5): e1001866.
Yang, Z., Guo, Q., Goto, S., Chen, Y., Li, N., Muto, A., Himeno, H., Deng, H., Lei, J., and Gao, N. (2014). Characterization of the in vivo 30S ribosomal assembly intermediates reveals essential role of S5 and location of unprocessed ends of the 17S rRNA. Protein Cell 5, 394-407.
Li, N., Chen, Y., Guo, Q., Zhang, Y., Yuan, Y., Ma, C., Deng, H., Lei, J., and Gao, N. (2013). Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit. Nucleic Acids Res 41, 7073-7083.
Guo, Q., Goto, S., Chen, Y., Feng, B., Xu, Y., Muto, A., Himeno, H., Deng, H., Lei, J., and Gao, N. (2013). Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM and general features of the assembly process. Nucleic Acids Res 41, 2609-2620.
Huang, W., Choi, W., Hu, W., Mi, N., Guo, Q., Ma, M., Liu, M., Tian, Y., Lu, P., Wang, F.L., et al. (2012). Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res 22, 473-489.
Guo, Q., Yuan, Y., Xu, Y., Feng, B., Liu, L., Chen, K., Sun, M., Yang, Z., Lei, J., and Gao, N. (2011). Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 108, 13100-13105.
Pre-print and conference papers:
Rigort, A., Guo, Q., Bäuerlein, F.J.B., and Fernández-Busnadiego, R. (2018). The combination of cryo-FIB and in situ cryo-electron tomography enables ultrastructural analysis of disease-related protein aggregates. Microsc. Anal. S4. (Cover story)
Zhou, B., Guo, Q., Zeng, X., and Xu, M. (2018). Feature Decomposition Based Saliency Detection in Electron Cryo-Tomograms. Proceedings (IEEE Int Conf Bioinformatics Biomed) 2018, 2467-2473.
Liu, C., Zeng, X., Wang, K., Guo, Q., Xu, M. (2018). Multi-task Learning for Macromolecule Classification, Segmentation and Coarse Structural Recovery in Cryo-Tomography. arXiv preprint arXiv:1805.06332
Teaching
Life Sciences and Visual Communication
Laboratory Introduction

We are an in situ Structural Biology lab, we study Cellular Architecture—how subcellular compartments build up a functional cell, and Macromolecule Sociology—what’s the relationship between macromolecules and organelles.

Cryo-electron tomography (Cryo-ET) is a cutting-edge technique that allows the study of protein function in their physiological cellular context and, via subtomogram averaging technique, at molecular resolution. The development of correlative cryo-light and electron microscopy (CLEM) and focused ion beam (FIB) allows precise thinning of vitrified cells to target the region of interest. Based on these state-of-the-art techniques our research focus:


  • To capture molecular snapshots of fundamental cellular processes in their physiological context.
  • To better understand the structural mechanisms of human diseases, especially aging related degenerative diseases.
  • To optimize a practical workflow for high resolution in situ structural biology.